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/æ/ in North American English (Labov et al., 2006)
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A linguistic problem: Raising of /æ/ before /g/ (1)

Zeller (1997) reported that younger, but not older, speakers
from the Milwaukee area merged /æg/ with /ejg/ (e.g.,
hag=Haig)

Labov, Ash, and Boberg (2006) reported the same merger for
some speakers in Wisconsin, Minnesota, and central Canada;
they also noted that /æ/ tended to be higher before /g/ than
before /d/ over a somewhat wider area
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A linguistic problem: Raising of /æ/ before /g/ (2)

Bauer and Parker (2008),
Benson et al. (2011): speakers
from Eau Claire, Wisconsin,
raised /æg/

Bauer and Parker's ultrasound
data show that tongue body is
raised in /æg/ but still distinct
from other front vowels.

Wassink (2015) concluded that
/æg/ and /Eg/ were raised in
Seattle.

/á/-Raising in Wisconsin English 415

Hypothesis 1: Merger with /e/. The merger hypothesis predicts that the acoustic 
and articulatory characteristics of vowels in the bag class of words will differ 
significantly from the characteristics of other /á/ words and pattern identi-
cally, or very similarly, to /e/ words. The results do not support this conclu-
sion. The bag vowel begins like an ordinary /á/ but then raises and moves 
forward, though never to a height identical to /e/.

The overall formant trajectory of the bag vowel loosely resembles that 
of /e/ (i.e., a gradual raising and fronting), but at no point do the bag vowels 
and /e/ pattern identically (figure 5). At 20% vowel duration, F1 values for 
/e/ are significantly lower than bag by about 100 Hz, and values of F2 at 20% 
for /e/ are significantly higher than bag by about 200 Hz. At 50% and 70% 
vowel duration, both F1 and F2 are significantly lower and higher (respec-
tively) for /e/ compared to the bag vowel by at least 200 Hz. The most that 
can be stated about the formant data in support of a merger account is that 
the offset of the bag vowel is “near” (i.e., slightly lower and more forward 
in the acoustic space than) the onset of /e/. The difference between the bag 
vowel at 70% and /e/ at 20% is significant for F1 (t(6) =  –4.15, p < 0.01, two 
tail) but not for F2 (t(6) =  –1.86, p < 0.01, two tail).

The durations of the bag vowel and /e/ are not significantly different 
from each other (both are about 210 ms). However, the length difference 
between /e/ and the other /á/ vowels is also not significant (figure 6). 

figure 5
Average F1 and F2 at 20%, 50%, and 70% of Vowel Duration  

for /e/, /á/, /E/, and the bag Vowel 
(data pooled across speakers)
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A �gure from Bauer and Parker
(2008) illustrating di�erences in
average trajectories
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A linguistic problem: Raising of /æ/ before /g/ (3)

Purnell (2008), using x-ray data,
found that, after /æ/, Wisconsin
subjects articulated /g/ more
fronted than /k/ and with more
forward lip position

Prevelar Raising Gestures 395

figure 12
Tongue Pellet Trajectories for /ág/ and /ák/ for Select Tokens and Speakers

a. PVR-Affected Speaker WID14

b. PVR-Unaffected Speaker WID7
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Potential phonetic motivations for pre-velar raising

Palatal-induced upgliding has occurred other times in the
history of English, mostly before voiced stops and fricatives
(and mostly not before voiceless stops).

Palatal [ç] conditioned upgliding in Middle English,
e.g. OE eahta [æ6xtA] > *[æçt@] > ME eight [aiçt]
/g/=[é], /N/=[ñ], /S/, and /Z/, as in bag, hang, cash, and
azure, respectively, condition upglides in various American
dialects (see, e.g., Kurath and McDavid 1961; Hartman 1969;
Thomas 2001)

Hyperarticulation before voiceless obstruents?

There is some evidence that vowels can show more extreme
articulations before voiceless obstruents than elsewhere (e.g.,
Wolf 1978; Summers 1987; Moreton 2008)
For low vowels, this means that F1 values are higher before
voiceless obstruents than before voiced obstruents (so that the
vowel reaches a lower position before voiceless obstruents).
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/æ/ raising in other contexts

/æ/ raising before nasals is widespread in North American
English.

Apparent phonetic motivation: Nasalization has a strong e�ect
on F1 in low vowels, altering their perceived height (and may
also raise F2; Krakow et al. 1988)

Raising in other contexts (e.g., before anterior voiceless
fricatives) attributable to an earlier lengthening event.
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De Decker and Nycz (2012): /æ/-tensing in New Jersey

Speaker 1: acoustic raising+fronting and tongue raising+fronting

3. Results

We first present the acoustic results for each speaker, in order to identify the types of /æ/ systems exhibited. The
articulatory findings are then presented and discussed in terms of their relationship to these acoustic patterns.

3.1. Acoustics

3.1.1. Speaker 1

As the plot in Fig. 2 shows, there is a clear separation between Speaker 1’s tokens of pan and his non-nasal tokens. However,
this speaker does not exhibit a simple nasal system: instead, there is a gradual increase in acoustic tenseness from pat to pan,
such that pat has the lowest and least-front realization, pass is somewhat higher and fronter, and pad is higher and fronter still.
One-way ANOVAs revealed that Word was a significant predictor of both F1 (F(3, 32) = 180.8, p< 0.001) and F2 (F(3, 32)
= 67.39, p < 0.001) for these tokens; the distinctness of the four word groups is corroborated statistically by the results of the
pairwise t tests (Table 3), which show that any pair of words is significantly different along both the F1 and F2 dimensions.
Speaker 1 thus exhibits what we will refer to in the remainder of this paper as a complex nasal system: while there is a clear
division between pre-nasal and pre-oral tokens, there is also additional systematic patterning among the non-nasal contexts.

3.1.2. Speaker 2

Unlike Speaker 1, Speaker 2 exhibits a more typical nasal system. The plot in Fig. 3 reveals a clear differentiation between
prenasal [[TD$INLINE]æ] and pre-oral [æ], with tokens of pat, pad, and pass overlapping in the vowel space. While word was a significant
predictorofbothF1(F(3,36)=110.3,p< 0.001)andF2(F(3,36) = 100.7,p < 0.001)inthetwoone-wayANOVAs, theposthoctests
show that this result is due to the separation of pan; there are no significant differences between the pre-oral words (Table 4).
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Fig. 2. Speaker 1: [æ] acoustics.

Table 3
Speaker 1: results of pairwise comparisons (p values).

pan pad pass

(a) F1 comparisons

pad <0.001 – –

pass <0.001 0.037 –

pat <0.001 <0.001 <0.001

(b) F2 comparisons

pad <0.001 – –

pass <0.001 <0.001 –

pat <0.001 <0.001 0.004

P.M. De Decker, J.R. Nycz / Lingua 122 (2012) 810–821814

→

acoustic findings, in that a significant difference in F2 between pad and pat is not reflected in the lingual articulation. With
respect to the tongue body, pan has the highest articulation. There is a very slight difference, if any, between pad and pat, with
pass slightly lower than both of these, for part of the contour. This finding differsmarkedly from the acoustics, which showed
pan to be no higher in the vowel space than pass or pad.

Looking just at Speakers 1 and 4, we see two types of apparent mismatches in the mapping between articulation and
acoustics: acoustic differences which are not attributable to lingual differences (in fronting), and lingual differences which
do not seem to result in acoustic differences (in height).

3.2.2. Speakers 2 and 3

Let us now consider the speakers who each exhibited a nasal /æ/ system. For these speakers, pre-nasal /æ/ was realized
much higher and fronter in the vowel space then pre-oral /æ/, with no significant acoustic differences between pad, pass, and
pat. These acoustic results imply particular patterns of lingual articulation: the contour of pan should indicate a higher
tongue body and a more advanced tongue position than pass, pad, and pat, while the contours for the latter three words
should overlap in both regions, indicating no difference in how the pre-oral words are articulated.

Speaker 2’s articulatory results conform to these expectations. This speaker’s tongue is more advanced for pan than the
remainingwords, and the tongue body is higher (Fig. 8). At the same time, there is almost complete overlap of the contours of
pass, pad, and pat, indicating no difference in lingual articulation between these words.

For Speaker 3, however, the mapping between lingual articulation and acoustic results is less straightforward. As shown
in Fig. 9, the contours corresponding to pass, pad, and pat occupy essentially the same position at the back of the tongue,
consistent with the lack of F2 difference between these words. However, the tongue body of pass is somewhat higher than
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Fig. 6. Speaker 1 [æ] articulation in four environments. (a) All tongue contours. (b) Smoothing splines.
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De Decker and Nycz (2012): /æ/-tensing in New Jersey

Speaker 3: acoustic raising+fronting only

3.1.3. Speaker 3

Like Speaker 2, Speaker 3 exhibits a nasal system (Fig. 4): pan tokens are realized higher and fronter than the
undifferentiated mass of pass, pad, and pat tokens. Word was again a significant predictor of both F1 (F(3, 36)=72.12,
p < 0.001) and F2 (F(3, 36) = 27.87, p < 0.001),with post hoc tests showing amajor two-way split between pan and the other
words (see Table 5).

3.1.4. Speaker 4

Speaker 4, like Speaker 1, exhibits a complex nasal system: there is a clear separation of pan tokens and the other words,
with what appears to be a gradual increase in fronting and perhaps raising from pat to pan (Fig. 5). Word was a significant
predictor of both F1 (F(3, 36) = 5.05, p = 0.005) and F2 (F(3, 36) = 60.42, p < 0.001). However, the results of the pairwise
comparisons are somewhat more complicated (Table 6). Along the F1 dimension, there is a two-way difference between pat

and the other (traditionally tense) words. Along the F2 dimension, pan is significantly fronter than the remainingwords, and
pad is fronter than pat; pass, which occupies a space between pad and pat, overlaps both of these words and is not
significantly different than either.

3.1.5. Summary of acoustic analyses

The results of acoustic analyses of F1 and F2 reveal differences between tense and non-tense/less-tense variants of the
low front vowel for all four speakers. These speakers may be divided into two groups based on their observed acoustic

[(Fig._3)TD$FIG]
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Fig. 3. Speaker 2: [æ] acoustics.

Table 4
Speaker 2: results of pairwise comparisons (p values).

pan pad pass

(a) F1 comparisons

pad <0.001 – –

pass <0.001 0.056 –

pat <0.001 0.818 0.064

(b) F2 comparisons

pad <0.001 – –

pass <0.001 0.754 –

pat <0.001 0.104 0.077

P.M. De Decker, J.R. Nycz / Lingua 122 (2012) 810–821 815

→

that of pad/pat9; this articulatory difference is not apparent in the acoustic data for F1, which indicate no difference between
pass and the words ending in oral stops.

The more striking mismatch, however, comes from the comparison of pan with the other words. While Speaker 3’s pan
was significantly different from her pass, pad, and pat in terms of F1 and F2 values, this clear acoustic difference is not
reflected in her articulatory results: pan is no more advanced than the other words, and pan is barely higher than pad/pat.
That is, there is no clear lingual difference between pan and the other contours underlying the clear acoustic difference
between these two groups.

4. Discussion

Evenwithin the small sample discussed here, there is variation in the types of /æ/ tensing systems exhibited among these
speakers. Though all four subjects are from the same general region in New Jersey and of the same age, they exhibit two
different patterns of /æ/ realization. Speakers 2 and 3 produce a classic nasal system, with a clear separation between pre-
nasal /æ/ and pre-oral /æ/, with no differences between the non-pre-nasal tokens. Speakers 1 and 4, however, produce what
we are labelling a complex nasal system: while these speakers also have a clear separation between /æ/ in pan and /æ/ in
pass/pad/pat, the vowels of the latter three words do not overlap completely in acoustic space, with pass and pad occupying
intermediate positions between a comparatively low and back pat and the high front pan. Our findings here are consistent
with Ash (2002)’s previous research on short-a in New Jersey, which found that speakers in regions within the New York
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Fig. 8. Speaker 2 [æ] articulation in four environments. (a) All tongue contours. (b) Smoothing splines.
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Fig. 9. Speaker 3 [æ] articulation in four environments. (a) All tongue contours. (b) Smoothing splines.

9 Again, this is probably due to coarticulation with the following [s].
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Purnell (2008): Pellet trajectories from XRMB database
(Westbury, 1994)Prevelar Raising Gestures 395

figure 12
Tongue Pellet Trajectories for /ág/ and /ák/ for Select Tokens and Speakers

a. PVR-Affected Speaker WID14

b. PVR-Unaffected Speaker WID7
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Time-varying signals from PCA of XRMB data (Story, 2007;
Story and Bunton, 2013)

vocal tract based on fleshpoint pellets affixed to the tongue, lips and jaw in the
midsagittal plane. Tracked over time with the X-ray microbeam (XRMB) system
(Westbury 1994), these pellets can be used to produce a time-dependent repre-
sentation of the oral part of the vocal tract shape that can be analyzed with a PCA
in much the same way as was done with the MRI-based area functions. Shown in
the top panel of Fig. 7 is the audio signal of a series of four vowels spoken in
succession by a male talker while in the XRMB system. The middle panel shows
the coefficients (½q1ðtÞ; q2ðtÞ�) derived via PCA and subsequent processing (see
Story (2007) for details) as they vary over the time course of the four vowels,
similar to the coefficient traces shown previously in Fig. 3a for an /æ/ vowel.

An interesting by-product of this process is that the time-variation of the
coefficients can be seen not only during production of the vowels, but also
between them where no sound is produced. In Fig. 7, the segments of time during
which sound is present, and hence formant frequencies expressed, are indicated by
the thick lines, whereas the silent portions are shown as thin lines. This offers some
insight into how a speaker configures the vocal tract prior to initiating voicing. For
example, just before the u vowel was excited acoustically, the speaker altered the
shape of the vocal tract such that q1 was increased from a negative to positive
value. Over the duration of the vowel the coefficients change only slightly, but
even so, there is a fairly large change in the corresponding [F1, F2] frequencies
plotted in the bottom panel of the figure. Almost instantly following cessation of
the /u/ vowel (i.e., at about 0.5 s) the q1 coefficient begins to shift downward
toward the value needed to initiate the upcoming /e/ vowel. Unlike the previous

Fig. 7 Audio waveforms (upper), time-varying coefficients (middle), and formant contours
(bottom) based on the production of four vowels by a male talker. Note the time-varying
coefficients are continuous throughout the entire 3.6 s duration; the lines are thickened during the
portions of time where sound is present

Simulation and Identification of Vowels 171
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EigenTongues decomposition (Hueber et al., 2007)

Principal component analysis of
vocal tract images (Hueber
et al. 2007 for ultrasound;
Carignan et al. 2013 for MRI)

Principal Component loadings
remapped onto original spatial
location

A video becomes a matrix of PC
scores

http://phon.wordpress.ncsu.edu
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Acoustic/articulatory vowel plots
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Acoustic/articulatory vowel plots
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PC loadings heatmaps (�rst nine PCs for one speaker)
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Ultrasound image acquisition (at NCSU and uOttawa)

Terason t3000

8MC3 microconvex array

Ultraspeech software
(Hueber et al., 2007)

Articulate Instruments probe
stabilization headset

120 monosyllabic words,
randomized and repeated 3
times
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Ultrasound image acquisition (at NCSU and uOttawa)

Terason t3000

8MC3 microconvex array

Ultraspeech software
(Hueber et al., 2007)

Articulate Instruments probe
stabilization headset

120 monosyllabic words,
randomized and repeated 3
times
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Pilot: 21 speakers (overlaid on ANAE /æ/ map; Labov et al. 2006)
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Pilot: 21 speakers (overlaid on ANAE /æ/ map; Labov et al. 2006)
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Time-varying articulatory signals from ultrasound

�ban�

Quanti�ed images → articulatory signal
with sampling rate = system frame rate

Deriving time-series data from
measured tongue contour tracings
(Falahati, 2013)

PCs and rotated PCs over time

Linear Discriminant Analysis of PC
scores over time
(Pouplier and Hoole, 2013)

Acoustically-inspired linear
combinations of PCs over time. . .
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Acoustic diagonal (Z2-Z1)

Vowel space (diagonals)
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Articulatory diagonal (art.Z2Z1)

Speaker: nov03
(Broadway, NC; 1992, M)

Audio segmented using P2FA
(Yuan and Liberman, 2008) and
vowel/approximant formants
measured at 7ms intervals

Linear regression for each speaker's
front diagonal vowels [A æ E ej I i]:
(Z2-Z1 ∼ PC1 + . . . + PC20)

20 coe�cients used to make a
linear weighted combination of the
PCs that approximates Z2-Z1

Second set of linear regressions
using only F1 (to examine
relationship between tongue
position, nasalization, and F1)
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Articulatory diagonal (art.Z2Z1): heatmaps

Speaker: nov01
(Vancouver, WA; 1976, M)
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(Arlington, TX; 1992, M)

Speaker: nov03
(Broadway, NC; 1992, M)
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(Wilmington, NC; 1986, M)

Speaker: nov04
(Olympia, WA; 1982, M)

Speaker: nov12
(Fargo, ND; 1981, M)
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Alveolar signal (LDA with [t d n s z]): �sag�
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Velar signal (LDA with [k g N]): �sag�
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Front diagonal (art.Z2Z1) articulatory signal: �ban�
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/æ/ tensing before nasals
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widespread pre-/m n/ tensing
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nucleus

pre-/N/ tensing involves tongue
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F1 vs. Lingual F1 in vowels before /m/ and /b/
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Change in F1 and Lingual F1 in pre-nasal position: /a/
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Change in F1 and Lingual F1 in pre-nasal position: /E/
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Change in F1 and Lingual F1 in pre-nasal position: /ej/
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/æ/ tensing: Philadelphia
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`bad' > `sad': tongue gesture
similar to /æ/ before /n/
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(2012) four New Jersey speakers)

Anterior voiceless fricatives involve
gesture similar to `bad' and almost
all of the pre-/m n/ raising we have
seen so far.
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Summary: /æ/ raising

Pre-nasal and Philadelphia tensing: large tongue raising
gesture at the vowel nucleus

F1 lowering in pre-nasal /æ/ is accounted for by tongue
raising.

Pre-velar /æ/ raising is a matter of timing (because pre-velar
vowels end with velar contact).

The dorsal target appears to more anterior for /g/ than for
/k/ for many speakers, but conspicuously not for some,
including the one UK speaker and the one Texas speaker.

Many of our Upper Midwest and Ontario speakers have
pre-/g/ raising and articulatorily distinct /g/ and /k/.
Our Northwestern speakers have pre-/g/ raising but
articulatorily similar /g/ and /k/.
Our North Carolina speakers have distinct /g/ and /k/ but no
pre-/g/ raising.
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Summary: articulatory signals

Ultrasound is a relatively easy and practical way to collect
articulatory data on the scale necessary for variation studies.

By reducing the labor involved in ultrasound data analysis,
articulatory signals make ultrasound data analysis much more
�exible and make studying the dynamics of speech production
more practical.

Signals derived from PCs using acoustic data can be used to
track linguistically relevant tongue movements
(e.g. articulatory movement along the front edge of the vowel
space).

Acoustically-derived signals can also be used to distinguish
e�ects of tongue movement from e�ects of lips, nasalization,
etc.
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Anteriority of closure: Velar palatalization
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Anteriority of closure: Velars after /æ/
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Anteriority of closure: Velars before /i ej E A/
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Anteriority of closure: Velars after /i ej E A/
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